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Tricky Percentages 

 

Statistical arguments are full of percentages, and there are lots of ways you can fool people with 

them. The key to not being fooled by such figures, usually, is to keep in mind what it’s a percentage 

of. Inappropriate, shifting, or strategically chosen numbers can give you misleading percentages. 

 

When the numbers are very small, using percentages instead of fractions is misleading. Johns 

Hopkins Medical School, when it opened in 1893, was one of the few medical schools that allowed 

women to matriculate.59 In those benighted times, people worried about women enrolling in 

schools with men for a variety of silly reasons. One of them was the fear that the impressionable 

young ladies would fall in love with their professors and marry them. Absurd, right? Well, maybe 

not: in the first class to enroll at the school, 33% of the women did indeed marry their professors! 

The sexists were apparently right. That figure sounds impressive, until you learn that the 

denominator is 3. Three women enrolled at Johns Hopkins that first year, and one of them married 

her anatomy professor. Using the percentage rather than the fraction exaggerates in a misleading 

way. Another made up example: I live in a relatively safe little town. If I saw a headline in my 

local newspaper that said “Armed Robberies are Up 100% over Last Year” I would be quite 

alarmed. That is, until I realized that last year there was one armed robbery in town, and this year 

there were two. That is a 100% increase, but using the percentage of such a small number is 

misleading. 

 

You can fool people by changing the number you’re taking a percentage of mid-stream. Suppose 

you’re an employee at my aforementioned LogiCorp. You evaluate arguments for $10.00 per hour. 

One day, I call all my employees together for a meeting. The economy has taken a turn for the 

worse, I announce, and we’ve got fewer arguments coming in for evaluation; business is slowing. 

I don’t want to lay anybody off, though, so I suggest that we all share the pain: I’ll cut everybody’s 

pay by 20%; but when the economy picks back up, I’ll make it up to you. So you agree to go along 

with this plan, and you suffer through a year of making a mere $8.00 per hour evaluating 

arguments. But when the year is up, I call everybody together and announce that things have been 

improving and I’m ready to set things right: starting today, everybody gets a 20% raise. First a 

20% cut, now a 20% raise; we’re back to where we were, right? Wrong. I changed numbers mid-

stream. When I cut your pay initially, I took twenty percent of $10.00, which is a reduction of 

$2.00. When I gave you a raise, I gave you twenty percent of your reduced pay rate of $8.00 per 

hour. That’s only $1.60. Your final pay rate is a mere $9.60 per hour.60 

 

Often, people make a strategic decision about what number to take a percentage of, choosing the 

one that gives them a more impressive-sounding, rhetorically effective figure. Suppose I, as the 

CEO of LogiCorp, set an ambitious goal for the company over the next year: I propose that we 

increase our productivity from 800 arguments evaluated per day to 1,000 arguments per day. At 

the end of the year, we’re evaluating 900 arguments per day. We didn’t reach our goal, but we did 

make an improvement. In my annual report to investors, I proclaim that we were 90% successful. 

That sounds good; 90% is really close to 100%. But it’s misleading. I chose to take a percentage 

of 1,000: 900 divided by 1,000 give us 90%. But is that the appropriate way to measure the degree 

                                                 
59 Not because the school’s administration was particularly enlightened. They could only open with the financial 

support of four wealthy women who made this a condition for their donations. 
60 This example inspired by Huff 1954, pp. 110 - 111. 
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to which we met the goal? I wanted to increase our production from 800 to 1,000; that is, I wanted 

a total increase of 200 arguments per day. How much of an increase did we actually get? We went 

from 800 up to 900; that’s an increase of 100. Our goal was 200, but we only got up to 100. In 

other words, we only got to 50% of our goal. That doesn’t sound as good. 

 

Another case of strategic choices. Opponents of abortion rights might point out that 97% of 

gynecologists in the United States have had patients seek abortions. This creates the impression 

that there’s an epidemic of abortion-seeking, that it happens regularly. Someone on the other side 

of the debate might point out that only 1.25% of women of childbearing age get an abortion each 

year. That’s hardly an epidemic. Each of the participants in this debate has chosen a convenient 

number to take a percentage of. For the anti-abortion activist, that is the number of gynecologists. 

It’s true that 97% have patients who seek abortions; only 14% of them actually perform the 

procedure, though. The 97% exaggerates the prevalence of abortion (to achieve a rhetorical effect). 

For the pro-choice activist, it is convenient to take a percentage of the total number of women of 

childbearing age. It’s true that a tiny fraction of them get abortions in a given year; but we have to 

keep in mind that only a small percentage of those women are pregnant in a given year. As a matter 

of fact, among those that actually get pregnant, something like 17% have an abortion. The 1.25% 

minimizes the prevalence of abortion (again, to achieve a rhetorical effect). 

 

The Base-Rate Fallacy 

 

The base rate is the frequency with which some kind of event occurs, or some kind of phenomenon 

is observed. When we ignore this information, or forget about it, we commit a fallacy and make 

mistakes in reasoning. 

 

Most car accidents occur in broad daylight, at low speeds, and close to home. So does that mean 

I’m safer if I drive really fast, at night, in the rain, far away from my house? Of course not. Then 

why are there more accidents in the former conditions? The base rates: much more of our driving 

time is spent at low speeds, during the day, and close to home; relatively little of it is spent driving 

fast at night, in the rain and far from home.61 

 

Consider a woman formerly known as Mary (she changed her name to Moon Flower). She’s a 

committed pacifist, vegan, and environmentalist; she volunteers with Green Peace; her favorite 

exercise is yoga. Which is more probable: that she’s a best-selling author of new-age, alternative-

medicine, self-help books—or that she’s a waitress? If you answered that she’s more likely to be 

a best-selling author of self-help books, you fell victim to the base-rate fallacy. Granted, Moon 

Flower fits the stereotype of the kind of person who would be the author of such books perfectly. 

Nevertheless, it’s far more probable that a person with those characteristics would be a waitress 

than a best-selling author. Why? Base rates. There are far, far (far!) more waitresses in the world 

than best-selling authors (of new-age, alternative-medicine, self-help books). The base rate of 

waitressing is higher than that of best-selling authorship by many orders of magnitude.  

 

Suppose there’s a medical screening test for a serious disease that is very accurate: it only produces 

false positives 1% of the time, and it only produces false negatives 1% of the time (it’s highly 

                                                 
61 This example inspired by Huff 1954, pp. 77 - 79. 
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sensitive and highly specific). The disease is serious, but rare: it only occurs in 1 out of every 

100,000 people. Suppose you get screened for this disease and your result is positive; that is, you’re 

flagged as possibly having the disease. Given what we know, what’s the probability that you’re 

actually sick? It’s not 99%, despite the accuracy of the test. It’s much lower. And I can prove it, 

using our old friend Bayes’ Law. The key to seeing why the probability is much lower than 99%, 

as we shall see, is taking the base rate of the disease into account. 

 

There are two hypotheses to consider: that you’re sick (call it ‘S’) and that you’re not sick (~ S). 

The evidence we have is a positive test result (P). We want to know the probability that you’re 

sick, given this evidence: P(S | P). Bayes’ Law tells us how to calculate this: 

 

                                                            P(S) x P(P | S) 

P(S | P)  =   

                      P(S) x P(P | S) + P(~ S) x P(P | ~ S) 

 

The base rate of the sickness is the rate at which it occurs in the general population. It’s rare: it 

only occurs in 1 out of 100,000 people. This number corresponds to the prior probability for the 

sickness in our formula—P(S). We have to multiply in the numerator by 1/100,000; this will have the 

effect of keeping down the probability of sickness, even given the positive test result. What about 

the other terms in our equation? ‘P(~ S)’ just picks out the prior probability of not being sick; if 

P(S) = 1/100,000, then P(~ S) = 99,999/100,000. ‘P(P | S)’ is the probability that you would get a positive 

test result, assuming you were in fact sick. We’re told that the test is very accurate: it only tells 

sick people that they’re healthy 1% of the time (1% rate of false negatives); so the probability that 

a sick person would get a positive test result is 99%—P(P | S) = .99. ‘P(P | ~ S)’ is the probability 

that you’d get a positive result if you weren’t sick. That’s the rate of false positives, which is 1%—

P(P | ~ S) = .01. Plugging these numbers into the formula, we get the result that P(S | P) = .000999. 

That’s right, given a positive result from this very-accurate screening test, you’re probability of 

being sick is just under 1/10,000. The test is accurate, but the disease is so rare (its base rate is so 

low) that your chances of being sick are still very low even after a positive result. 

 

Sometimes people will ignore base rates on purpose to try to fool you. Did you know that marijuana 

is more dangerous than heroin? Neither did I. But look at this chart: 
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That graphic published in a story in USA Today under the headline “Marijuana poses more risks 

than many realize.”62 The chart/headline combo create an alarming impression: if so many more 

people are going to the emergency room because of marijuana, it must be more dangerous than I 

realized. Look at that: more than twice as many emergency room visits for pot than heroin; it’s 

almost as bad as cocaine! Or maybe not. What this chart ignores is the base rates of marijuana-, 

cocaine-, and heroin-use in the population. Far (far!) more people use marijuana than use heroin 

or cocaine. A truer measure of the relative dangers of the various drugs would be the number of 

emergency room visits per user. That gives you a far different chart:63 

 

                                                 
62 Liz Szabo, “Marijuana poses more risks than many realize,” July 27, 2014, USA Today. 

http://www.usatoday.com/story/news/nation/2014/07/27/risks-of-marijuana/10386699/?sf29269095=1 
63 From German Lopez, “Marijuana sends more people to the ER than heroin. But that's not the whole story.” August 

2, 2014, Vox.com. http://www.vox.com/2014/8/2/5960307/marijuana-legalization-heroin-USA-Today 

http://www.usatoday.com/story/news/nation/2014/07/27/risks-of-marijuana/10386699/?sf29269095=1
http://www.vox.com/2014/8/2/5960307/marijuana-legalization-heroin-USA-Today
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Lying with Pictures 

 

Speaking of charts, they are another tool that can be used (abused) to make dubious statistical 

arguments. We often use charts and other pictures to graphically convey quantitative information. 

But we must take special care that our pictures accurately depict that information. There are all 

sorts of ways in which graphical presentations of data can distort the actual state of affairs and 

mislead our audience. 

 

Consider, once again, my fictional company, LogiCorp. Business has been improving lately, and 

I’m looking to get some outside investors so I can grow even more quickly. So I decide to go on 

that TV show Shark Tank. You know, the one with Mark Cuban and panel of other rich people, 

where you make a presentation to them and they decide whether or not your idea is worth investing 

in. Anyway, I need to plan a persuasive presentation to convince one of the sharks to give me a 
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whole bunch of money for LogiCorp. I’m going to use a graph to impress them with company’s 

potential for future growth. Here’s a graph of my profits over the last decade: 

 

 
Not bad. But not great, either. The positive trend in profits is clearly visible, but it would be nice 

if I could make it look a little more dramatic. I’ll just tweak things a bit: 

 

 
 

Better. All I did was adjust the y-axis. No reason it has to go all the way down to zero and up to 

240. Now the upward slope is accentuated; it looks like LogiCorp is growing more quickly. 

But I think I can do even better. Why does the x-axis have to be so long? If I compressed the graph 

horizontally, my curve would slope up even more dramatically: 
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Now that’s explosive growth! The sharks are gonna love this. Well, that is, as long as they don’t 

look too closely at the chart. Profits on the order of $1.80 per year aren’t going to impress a 

billionaire like Mark Cuban. But I can fix that: 

 
 

There. For all those sharks know, profits are measure in the millions of dollars. Of course, for all 

my manipulations, they can still see that profits have increased 400% over the decade. That’s pretty 
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good, of course, but maybe I can leave a little room for them to mentally fill in more impressive 

numbers: 

 
 

That’s the one. Soaring profits, and it looks like they started close to zero and went up to—well, 

we can’t really tell. Maybe those horizontal lines go up in increments of 100, or 1,000. LogiCorp’s 

profits could be unimaginably high.  

 

People manipulate the y-axis of charts for rhetorical effect all the time. In their “Pledge to 

America” document of 2010, the Republican Party promised to pursue various policy priorities if 

they were able to achieve a majority in the House of Representatives (which they did). They 

included the following chart in that diagram to illustrate that government spending was out of 

control: 
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Writing for New Republic, Alexander Hart pointed out that the Republicans’ graph, by starting the 

y-axis at 17% and only going up to 24%, exaggerates the magnitude of the increase. That bar on 

the right is more than twice as big as the other two, but federal spending hadn’t doubled. He 

produced the following alternative presentation of the data64: 

 
 

Writing for The Washington Post, liberal blogger Ezra Klein passed along the original graph and 

the more “honest” one. Many of his commenters (including your humble author) pointed out that 

the new graph was an over-correction of the first: it minimizes the change in spending by taking 

the y-axis all the way up to 100. He produced a final graph that’s probably the best way to present 

the spending data65: 

 

 

                                                 
64 Alexander Hart, “Lying With Graphs, Republican Style (Now Featuring 50% More Graphs),” December 22, 2010, 

New Republic. https://newrepublic.com/article/77893/lying-graphs-republican-style 
65 Ezra Klein, “Lies, damn lies, and the 'Y' axis,” September 23, 2010, The Washington Post. 

http://voices.washingtonpost.com/ezra-klein/2010/09/lies_damn_lies_and_the_y_axis.html 

https://newrepublic.com/article/77893/lying-graphs-republican-style
http://voices.washingtonpost.com/ezra-klein/2010/09/lies_damn_lies_and_the_y_axis.html
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One can make mischief on the x-axis, too. In an April 2011 editorial entitled “Where the Tax 

Money Is”, The Wall Street Journal made the case that President Obama’s proposal to raise taxes 

on the rich was a bad idea.66 If he was really serious about raising revenue, he would have to raise 

taxes on the middle class, since that’s where most of the money is. To back up that claim, they 

produced this graph: 

 

 
 

This one is subtle. What they present has the appearance of a histogram, but it breaks one of the 

rules for such charts: each of the bars has to represent the same portion of the population. That’s 

not even close to the case here. To get their tall bars in the middle of the income distribution, the 

Journal’s editorial board groups together incomes between $50 and $75 thousand, $75 and $100 

thousand, then $100 and $200 thousand, and so on. There are far (far!) more people (or probably 

households; that’s how these data are usually reported) in those income ranges than there are in, 

say, the range between $20 and $25 thousand, or $5 to $10 million—and yet those ranges get their 

own bars, too. That’s just not how histograms work. Each bar in an income distribution chart would 

have to contain the same number of people (or households). When you produce such a histogram, 

you see what the distribution really looks like (these data are from a different tax year, but the 

basic shape of the graph didn’t change during the interim): 

 

                                                 
66 See here: http://www.wsj.com/articles/SB10001424052748704621304576267113524583554 

http://www.wsj.com/articles/SB10001424052748704621304576267113524583554
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Using The Wall Street Journal’s method of generating histograms—where each bar can represent 

any number of different households—you can “prove” anything you like. It’s not the rich or even 

the middle class we should go after if we really want to raise revenue; it’s the poor. That’s where 

the money is: 

 

 
 

There are other ways besides charts and graphs to visually present quantitative information: 

pictograms. There’s a sophisticated and rule-based method for representing statistical information 

using such pictures. It was pioneered in the 1920s by the Austrian philosopher Otto Neurath, and 

was originally called the Vienna Method of Pictorial Statistics (Wiener Methode der Bildstatistik); 

eventually it came to be known as Isotype (International System of TYpographic Picture 
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Education).67 The principles of Neurath’s system were such as to prevent the misrepresentation of 

data with pictograms. Perhaps the most important rule is that greater quantities are to be 

represented not by larger pictures, but by greater numbers of same-sized pictures. So, for instance, 

if I wanted to represent the fact that domestic oil production in the United States has doubled over 

the past several years, I could use the following depiction68: 

 

                                      
 

                     THEN                                                                   NOW 

 
It would be misleading to flout Neurath’s principles and instead represent the increase with a larger 

barrel: 

 

                                                
 

                       THEN                                                                  NOW 

 
All I did was double the size of the image. But I doubled it in both dimensions: it’s both twice as 

wide and twice as tall. Moreover, since oil barrels are three dimensional objects, I’ve also depicted 

a barrel on the right that’s twice as deep. The important thing about oil barrels is how much oil 

they can hold—their volume. By doubling the barrel in all three dimensions, I’ve depicted a barrel 

on the right that can hold 8 times as much oil as the one on the left. What I’m showing isn’t a 

doubling of oil production; it’s an eight-fold increase.  

                                                 
67 See here: https://en.wikipedia.org/wiki/Isotype_(picture_language) 
68 I’ve been using this example in class for years, and something tells me I got it from somebody else’s book, but 

I’ve looked through all the books on my shelves and can’t find it. So maybe I made it up myself. But if I didn’t, this 

footnote acknowledges whoever did. (If you’re that person, let me know!) 

https://en.wikipedia.org/wiki/Isotype_(picture_language)
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Alas, people break Neurath’s rules all the time, and end up (intentionally or not) exaggerating the 

phenomena they’re trying to depict. Matthew Yglesias, writing in Architecture magazine, made 

the point that the housing “bubble” that reached full inflation in 2006 (when lots of homes were 

built) was not all that unusual. If you look at recent history, you see similar cycles of boom and 

bust, with periods of lots of building followed by periods of relatively little. The magazine 

produced a graphic to present the data on home construction, and Yglesias made a point to post it 

on his blog at Slate.com because he thought it was illustrative.69 Here’s the graphic: 

 

 
 

It’s a striking figure, but it exaggerates the swings it’s trying to depict. The picograms are scaled 

to the numbers in the little houses (which represent the number of homes built in the given months), 

but in both dimensions. And of course houses are three-dimensional objects, so that even though 

the picture doesn’t depict the thrid dimension, our unconscious mind knows that these little 

domisciles have volume. So the Jan. 2006 house (2,273) is more than five times wider and higher 

than the April 2009 house (478). But five times in three dimensions: 5 x 5 x 5 = 125. The Jan. 

2006 house is over 125 times larger than the April 2009 house; that’s why it looks like we have a 

mansion next to a shed. There were swings in housing construction over the years, but they weren’t 

as large as this graphic makes them seem. 

 

One ubiquitous picture that’s easy to misinterpret, not because anybody broke Neurath’s rules, but 

simply because of how things happen to be in the world, is the map of the United States. What 

makes it tricky is that the individual states’ sizes are not proportional to their populations. This has 

the effect of exaggerating certain phenomena. Consider the final results of the 2016 presidential 

election, pictured, as they normally are, with states that went for the Republican candidate in red 

and those that went for the Democrat in blue. This is what you get70: 

 

                                                 
69 See here: http://www.slate.com/blogs/moneybox/2011/12/23/america_s_housing_shortage.html 
70 Source of image: https://en.wikipedia.org/wiki/Electoral_College_(United_States) 

http://www.slate.com/blogs/moneybox/2011/12/23/america_s_housing_shortage.html
https://en.wikipedia.org/wiki/Electoral_College_(United_States)
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Look at all that red! Clinton apparently got trounced. Except she didn’t: she won the popular vote 

by more than three million. It looks like there are a lot more Trump votes because he won a lot of 

states that are very large but contain very few voters. Those Great Plains states are huge, but hardly 

anybody lives up there. If you were to adjust the map, making the states’ sizes proportional to their 

populations, you’d end up with something like this71: 

 

 
 

And this is only a partial correction: this sizes the states by electors in the Electoral College; that 

still exaggerates the sizes of some of those less-populated states. A true adjustment would have to 

show more blue than red, since Clinton won more votes overall. 

                                                 
71 Ibid. 
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I’ll finish with an example stolen directly from the inspiration for this section—Darrell Huff’s 

How to Lie with Statistics.72 It is a map of the United States made to raise alarm over the amount 

of spending being done by the federal government (it was produced over half a century ago; some 

things never change). Here it is: 

 

The Darkening Shadow 

Federal Spending = Incomes of All People in Shaded States 
 

 
 

That makes it look like federal spending is the equivalent of half the country’s incomes! But Huff 

produced his own map (“Eastern style”), shading different states, same total population: 

 

 
 

Not nearly so alarming.  

 

People try to fool you in so many different ways. The only defense is a little logic, and a whole lot 

of skepticism. Be vigilant! 

                                                 
72 p. 103. 


